skip to main content


Search for: All records

Creators/Authors contains: "Tao, Terence"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We introduce a new probabilistic model of the primes consisting of integers that survive the sieving process when a random residue class is selected for every prime modulus below a specific bound. From a rigorous analysis of this model, we obtain heuristic upper and lower bounds for the size of the largest prime gap in the interval $[1,x]$ [ 1 , x ] . Our results are stated in terms of the extremal bounds in the interval sieve problem. The same methods also allow us to rigorously relate the validity of the Hardy-Littlewood conjectures for an arbitrary set (such as the actual primes) to lower bounds for the largest gaps within that set. 
    more » « less
    Free, publicly-accessible full text available September 1, 2024
  2. Abstract

    A well-known open problem of Meir and Moser asks if the squares of sidelength 1/nfor$$n\ge 2$$n2can be packed perfectly into a rectangle of area$$\sum _{n=2}^\infty n^{-2}=\pi ^2/6-1$$n=2n-2=π2/6-1. In this paper we show that for any$$1/21/2<t<1, and any$$n_0$$n0that is sufficiently large depending on t, the squares of sidelength$$n^{-t}$$n-tfor$$n\ge n_0$$nn0can be packed perfectly into a square of area$$\sum _{n=n_0}^\infty n^{-2t}$$n=n0n-2t. This was previously known (if one packs a rectangle instead of a square) for$$1/21/2<t2/3(in which case one can take$$n_0=1$$n0=1).

     
    more » « less
  3. Abstract

    The Erdős–Hooley Delta function is defined for as . We prove that for all . This improves on earlier work of Hooley, Hall–Tenenbaum, and La Bretèche–Tenenbaum.

     
    more » « less
  4. Abstract Let $X$ be a measure space with a measure-preserving action $(g,x) \mapsto g \cdot x$ of an abelian group $G$. We consider the problem of understanding the structure of measurable tilings $F \odot A = X$ of $X$ by a measurable tile $A \subset X$ translated by a finite set $F \subset G$ of shifts, thus the translates $f \cdot A$, $f \in F$ partition $X$ up to null sets. Adapting arguments from previous literature, we establish a “dilation lemma” that asserts, roughly speaking, that $F \odot A = X$ implies $F^{r} \odot A = X$ for a large family of integer dilations $r$, and use this to establish a structure theorem for such tilings analogous to that established recently by the second and fourth authors. As applications of this theorem, we completely classify those random tilings of finitely generated abelian groups that are “factors of iid”, and show that measurable tilings of a torus ${\mathbb{T}}^{d}$ can always be continuously (in fact linearly) deformed into a tiling with rational shifts, with particularly strong results in the low-dimensional cases $d=1,2$ (in particular resolving a conjecture of Conley, the first author, and Pikhurko in the $d=1$ case). 
    more » « less
  5. Abstract

    We construct an example of a group$$G = \mathbb {Z}^2 \times G_0$$G=Z2×G0for a finite abelian group $$G_0$$G0, a subsetEof $$G_0$$G0, and two finite subsets$$F_1,F_2$$F1,F2of G, such that it is undecidable in ZFC whether$$\mathbb {Z}^2\times E$$Z2×Ecan be tiled by translations of$$F_1,F_2$$F1,F2. In particular, this implies that this tiling problem isaperiodic, in the sense that (in the standard universe of ZFC) there exist translational tilings ofEby the tiles$$F_1,F_2$$F1,F2, but no periodic tilings. Previously, such aperiodic or undecidable translational tilings were only constructed for sets of eleven or more tiles (mostly in $$\mathbb {Z}^2$$Z2). A similar construction also applies for$$G=\mathbb {Z}^d$$G=Zdfor sufficiently large d. If one allows the group$$G_0$$G0to be non-abelian, a variant of the construction produces an undecidable translational tiling with only one tile F. The argument proceeds by first observing that a single tiling equation is able to encode an arbitrary system of tiling equations, which in turn can encode an arbitrary system of certain functional equations once one has two or more tiles. In particular, one can use two tiles to encode tiling problems for an arbitrary number of tiles.

     
    more » « less
  6. Abstract

    Singmaster’s conjecture asserts that every natural number greater than one occurs at most a bounded number of times in Pascal’s triangle; that is, for any natural number $t \geq 2$, the number of solutions to the equation $\binom{n}{m} = t$ for natural numbers $1 \leq m \lt n$ is bounded. In this paper we establish this result in the interior region $\exp(\log^{2/3+\varepsilon} n) \leq m \leq n - \exp(\log^{2/3+\varepsilon} n)$ for any fixed ɛ > 0. Indeed, when t is sufficiently large depending on ɛ, we show that there are at most four solutions (or at most two in either half of Pascal’s triangle) in this region. We also establish analogous results for the equation $(n)_m = t$, where $(n)_m := n(n-1) \dots (n-m+1)$ denotes the falling factorial.

     
    more » « less